
Package: opera (via r-universe)
October 15, 2024

Type Package

Title Online Prediction by Expert Aggregation

Version 1.2.1

Author Pierre Gaillard [cre, aut], Yannig Goude [aut], Laurent Plagne
[ctb], Thibaut Dubois [ctb], Benoit Thieurmel [ctb]

Maintainer Pierre Gaillard <pierre@gaillard.me>

Copyright EDF R&D 2012-2015

Description Misc methods to form online predictions, for
regression-oriented time-series, by combining a finite set of
forecasts provided by the user. See Cesa-Bianchi and Lugosi
(2006) <doi:10.1017/CBO9780511546921> for an overview.

License LGPL

URL http://pierre.gaillard.me/opera.html

BugReports https://github.com/dralliag/opera/issues

Depends R (>= 3.5.0)

Imports htmltools, rAmCharts, htmlwidgets, pipeR, alabama, methods,
Rdpack

Suggests quantreg, quadprog, RColorBrewer, testthat, splines, caret,
mgcv, survival, knitr, gbm, rmarkdown, magrittr, covr

RdMacros Rdpack

LazyData true

VignetteBuilder knitr

RoxygenNote 7.2.1

Encoding UTF-8

Repository https://dralliag.r-universe.dev

RemoteUrl https://github.com/dralliag/opera

RemoteRef HEAD

RemoteSha b1a4a7e9a206c6b5c0d5218e265e9f20675fac80

1

https://doi.org/10.1017/CBO9780511546921
http://pierre.gaillard.me/opera.html
https://github.com/dralliag/opera/issues

2 opera-package

Contents
opera-package . 2
check_loss . 5
check_matrix . 6
electric_load . 7
FTRL . 7
loss . 9
mixture . 10
oracle . 17
plot.mixture . 19
plot.oracle . 21
plot_ridge_weights . 21
plt_oracle_convex . 23
predict.mixture . 24
seriesToBlock . 25

Index 26

opera-package Online Prediction by ExpeRt Aggregation

Description

The package opera performs, for regression-oriented time-series, predictions by combining a finite
set of forecasts provided by the user. More formally, it considers a sequence of observations Y (such
as electricity consumption, or any bounded time series) to be predicted step by step. At each time
instance t, a finite set of experts (basicly some based forecasters) provide predictions x of the next
observation in y. This package proposes several adaptive and robust methods to combine the expert
forecasts based on their past performance.

Author(s)

Pierre Gaillard <pierre@gaillard.me>

References

Prediction, Learning, and Games. N. Cesa-Bianchi and G. Lugosi.

Forecasting the electricity consumption by aggregating specialized experts; a review of sequential
aggregation of specialized experts, with an application to Slovakian an French contry-wide one-day-
ahead (half-)hourly predictions, Machine Learning, in press, 2012. Marie Devaine, Pierre Gaillard,
Yannig Goude, and Gilles Stoltz

Contributions to online robust aggregation: work on the approximation error and on probabilistic
forecasting. Pierre Gaillard. PhD Thesis, University Paris-Sud, 2015.

opera-package 3

Examples

library('opera') # load the package
set.seed(1)

Example: find the best one week ahead forecasting strategy (weekly data)
packages
library(mgcv)

import data
data(electric_load)
idx_data_test <- 620:nrow(electric_load)
data_train <- electric_load[-idx_data_test,]
data_test <- electric_load[idx_data_test,]

Build the expert forecasts
##########################

1) A generalized additive model
gam.fit <- gam(Load ~ s(IPI) + s(Temp) + s(Time, k=3) +

s(Load1) + as.factor(NumWeek), data = data_train)
gam.forecast <- predict(gam.fit, newdata = data_test)

2) An online autoregressive model on the residuals of a medium term model

Medium term model to remove trend and seasonality (using generalized additive model)
detrend.fit <- gam(Load ~ s(Time,k=3) + s(NumWeek) + s(Temp) + s(IPI), data = data_train)
electric_load$Trend <- c(predict(detrend.fit), predict(detrend.fit,newdata = data_test))
electric_load$Load.detrend <- electric_load$Load - electric_load$Trend

Residual analysis
ar.forecast <- numeric(length(idx_data_test))
for (i in seq(idx_data_test)) {

ar.fit <- ar(electric_load$Load.detrend[1:(idx_data_test[i] - 1)])
ar.forecast[i] <- as.numeric(predict(ar.fit)$pred) + electric_load$Trend[idx_data_test[i]]

}

Aggregation of experts
###########################

X <- cbind(gam.forecast, ar.forecast)
colnames(X) <- c('gam', 'ar')
Y <- data_test$Load

matplot(cbind(Y, X), type = 'l', col = 1:6, ylab = 'Weekly load', xlab = 'Week')

How good are the expert? Look at the oracles
oracle.convex <- oracle(Y = Y, experts = X, loss.type = 'square', model = 'convex')

if(interactive()){
plot(oracle.convex)

}

4 opera-package

oracle.convex

Is a single expert the best over time ? Are there breaks ?
oracle.shift <- oracle(Y = Y, experts = X, loss.type = 'percentage', model = 'shifting')
if(interactive()){

plot(oracle.shift)
}
oracle.shift

Online aggregation of the experts with BOA
###

Initialize the aggregation rule
m0.BOA <- mixture(model = 'BOA', loss.type = 'square')

Perform online prediction using BOA There are 3 equivalent possibilities 1)
start with an empty model and update the model sequentially
m1.BOA <- m0.BOA
for (i in 1:length(Y)) {

m1.BOA <- predict(m1.BOA, newexperts = X[i,], newY = Y[i], quiet = TRUE)
}

2) perform online prediction directly from the empty model
m2.BOA <- predict(m0.BOA, newexpert = X, newY = Y, online = TRUE, quiet = TRUE)

3) perform the online aggregation directly
m3.BOA <- mixture(Y = Y, experts = X, model = 'BOA', loss.type = 'square', quiet = TRUE)

These predictions are equivalent:
identical(m1.BOA, m2.BOA) # TRUE
identical(m1.BOA, m3.BOA) # TRUE

Display the results
summary(m3.BOA)
if(interactive()){

plot(m1.BOA)
}

Plot options
##################################

?plot.mixture

static or dynamic : dynamic = F/T
plot(m1.BOA, dynamic = FALSE)

just one plot with custom label ?
'plot_weight', 'boxplot_weight', 'dyn_avg_loss',
'cumul_res', 'avg_loss', 'contrib'
if(interactive()){

plot(m1.BOA, type = "plot_weight",
main = "Poids", ylab = "Poids", xlab = "Temps")

check_loss 5

}

subset rows / time
plot(m1.BOA, dynamic = FALSE, subset = 1:10)

plot best n expert
plot(m1.BOA, dynamic = FALSE, max_experts = 1)

Using d-dimensional time-series
##################################

Consider the above exemple of electricity consumption
to be predicted every four weeks
YBlock <- seriesToBlock(X = Y, d = 4)
XBlock <- seriesToBlock(X = X, d = 4)

The four-week-by-four-week predictions can then be obtained
by directly using the `mixture` function as we did earlier.

MLpolBlock <- mixture(Y = YBlock, experts = XBlock, model = "MLpol", loss.type = "square",
quiet = TRUE)

The predictions can finally be transformed back to a
regular one dimensional time-series by using the function `blockToSeries`.

prediction <- blockToSeries(MLpolBlock$prediction)

Using the `online = FALSE` option

Equivalent solution is to use the `online = FALSE` option in the predict function.
The latter ensures that the model coefficients are not
updated between the next four weeks to forecast.
MLpolBlock <- mixture(model = "BOA", loss.type = "square")
d = 4
n <- length(Y)/d
for (i in 0:(n-1)) {

idx <- 4*i + 1:4 # next four weeks to be predicted
MLpolBlock <- predict(MLpolBlock, newexperts = X[idx,], newY = Y[idx], online = FALSE,

quiet = TRUE)
}

print(head(MLpolBlock$weights))

check_loss Function to check validy of provided loss function

Description

Function to check validy of provided loss function

6 check_matrix

Usage

check_loss(loss.type, loss.gradient, Y = NULL, model = NULL)

Arguments

loss.type character, list or function.

character Name of the loss to be applied (’square’, ’absolute’, ’percentage’, or
’pinball’);

list When using pinball loss: list with field name equal to ’pinball’ and field tau
equal to the required quantile in [0,1];

function A custom loss as a function of two parameters.

loss.gradient boolean, function.

boolean If TRUE, the aggregation rule will not be directly applied to the loss
function at hand, but to a gradient version of it. The aggregation rule is then
similar to gradient descent aggregation rule.

function If loss.type is a function, the derivative should be provided to be used
(it is not automatically computed).

Y numeric (NULL). (Optional) Target values (to perform some checks).

model character (NULL). (Optional) Model used (to perform some checks).

Value

loss.type

check_matrix Function to check and modify the input class and type

Description

Function to check and modify the input class and type

Usage

check_matrix(mat, name)

Arguments

mat data.frame, data.table, tibble. Object to be cast to matrix.

name character. Name of the object to be cast.

Value

a 3d array if a 3d array is provided, else a matrix.

electric_load 7

electric_load Electricity forecasting data set

Description

Electricity forecasting data set provided by EDF R&D. It contains weekly measurements of the total
electricity consumption in France from 1996 to 2009, together with several covariates, including
temperature, industrial production indices (source: INSEE) and calendar information.

Usage

data(electric_load)

Format

An object of class data.frame with 731 rows and 11 columns.

Examples

data(electric_load)
a few graphs to display the data
attach(electric_load)
plot(Load, type = 'l')
plot(Temp, Load, pch = 16, cex = 0.5)
plot(NumWeek, Load, pch = 16, cex = 0.5)
plot(Load, Load1, pch = 16, cex = 0.5)
acf(Load, lag.max = 20)
detach(electric_load)

FTRL Implementation of FTRL (Follow The Regularized Leader)

Description

FTRL (Shalev-Shwartz and Singer 2007) and Chap. 5 of (Hazan 2019) is the online counterpart of
empirical risk minimization. It is a family of aggregation rules (including OGD) that uses at any
time the empirical risk minimizer so far with an additional regularization. The online optimization
can be performed on any bounded convex set that can be expressed with equality or inequality
constraints. Note that this method is still under development and a beta version.

8 FTRL

Usage

FTRL(
y,
experts,
eta = NULL,
fun_reg = NULL,
fun_reg_grad = NULL,
constr_eq = NULL,
constr_eq_jac = NULL,
constr_ineq = NULL,
constr_ineq_jac = NULL,
loss.type = list(name = "square"),
loss.gradient = TRUE,
w0 = NULL,
max_iter = 50,
obj_tol = 0.01,
training = NULL,
default = FALSE,
quiet = TRUE

)

Arguments

y vector. Real observations.

experts matrix. Matrix of experts previsions.

eta numeric. Regularization parameter.

fun_reg function (NULL). Regularization function to be applied during the optimiza-
tion.

fun_reg_grad function (NULL). Gradient of the regularization function (to speed up the com-
putations).

constr_eq function (NULL). Constraints (equalities) to be applied during the optimiza-
tion.

constr_eq_jac function (NULL). Jacobian of the equality constraints (to speed up the com-
putations).

constr_ineq function (NULL). Constraints (inequalities) to be applied during the optimiza-
tion (... > 0).

constr_ineq_jac

function (NULL). Jacobian of the inequality constraints (to speed up the com-
putations).

loss.type character, list or function ("square").

character Name of the loss to be applied (’square’, ’absolute’, ’percentage’, or
’pinball’);

list List with field name equal to the loss name. If using pinball loss, field tau
equal to the required quantile in [0,1];

function A custom loss as a function of two parameters (prediction, label).

loss 9

loss.gradient boolean, function (TRUE).

boolean If TRUE, the aggregation rule will not be directly applied to the loss
function at hand, but to a gradient version of it. The aggregation rule is then
similar to gradient descent aggregation rule.

function If loss.type is a function, the derivative of the loss in its first compo-
nent should be provided to be used (it is not automatically computed).

w0 numeric (NULL). Vector of initialization for the weights.

max_iter integer (50). Maximum number of iterations of the optimization algorithm per
round.

obj_tol numeric (1e-2). Tolerance over objective function between two iterations of the
optimization.

training list (NULL). List of previous parameters.

default boolean (FALSE). Whether or not to use default parameters for fun_reg, con-
str_eq, constr_ineq and their grad/jac, which values are ALL ignored when
TRUE.

quiet boolean (FALSE). Whether or not to display progress bars.

Value

object of class mixture.

References

Hazan E (2019). “Introduction to online convex optimization.” arXiv preprint arXiv:1909.05207.

Shalev-Shwartz S, Singer Y (2007). “A primal-dual perspective of online learning algorithms.”
Machine Learning, 69(2), 115–142.

loss Errors suffered by a sequence of predictions

Description

The function loss computes the sequence of instantaneous losses suffered by the predictions in x
to predict the observation in y.

Usage

loss(
x,
y,
pred = NULL,
loss.type = list(name = "square"),
loss.gradient = FALSE

)

10 mixture

Arguments

x numeric. A vector of length T containing the sequence of prediction to be eval-
uated.

y numeric. A vector of length T that contains the observations to be predicted.

pred numeric. A vector of length T containing the sequence of real values.

loss.type character, list or function ("square").

• character Name of the loss to be applied (’square’, ’absolute’, ’percentage’,
or ’pinball’);

• list List with field name equal to the loss name. If using pinball loss, field
tau equal to the required quantile in [0,1];

• function A custom loss as a function of two parameters.

loss.gradient boolean, function (TRUE).

• boolean If TRUE, the aggregation rule will not be directly applied to the
loss function at hand, but to a gradient version of it. The aggregation rule is
then similar to gradient descent aggregation rule.

• function If loss.type is a function, the derivative should be provided to be
used (it is not automatically computed).

Value

A vector of length T containing the sequence of instantaneous losses suffered by the expert previ-
sions (x) or the gradient computed on the aggregated previsions (pred).

Author(s)

Pierre Gaillard <pierre@gaillard.me>

mixture Compute an aggregation rule

Description

The function mixture builds an aggregation rule chosen by the user. It can then be used to pre-
dict new observations Y sequentially. If observations Y and expert advice experts are provided,
mixture is trained by predicting the observations in Y sequentially with the help of the expert ad-
vice in experts. At each time instance t = 1, 2, . . . , T , the mixture forms a prediction of Y[t,] by
assigning a weight to each expert and by combining the expert advice.

Usage

mixture(
Y = NULL,
experts = NULL,
model = "MLpol",

mixture 11

loss.type = "square",
loss.gradient = TRUE,
coefficients = "Uniform",
awake = NULL,
parameters = list(),
quiet = TRUE,
...

)

S3 method for class 'mixture'
print(x, ...)

S3 method for class 'mixture'
summary(object, ...)

Arguments

Y A matrix with T rows and d columns. Each row Y[t,] contains a d-dimensional
observation to be predicted sequentially.

experts An array of dimension c(T,d,K), where T is the length of the data-set, d the
dimension of the observations, and K is the number of experts. It contains the
expert forecasts. Each vector experts[t,,k] corresponds to the d-dimensional
prediction of Y[t,] proposed by expert k at time t = 1, . . . , T . In the case of
real prediction (i.e., d = 1), experts is a matrix with T rows and K columns.

model A character string specifying the aggregation rule to use. Currently available
aggregation rules are:

’EWA’ Exponentially weighted average aggregation rules (Cesa-Bianchi and
Lugosi 2006). A positive learning rate eta can be chosen by the user. The
bigger it is the faster the aggregation rule will learn from observations and
experts performances. However, too high values lead to unstable weight
vectors and thus unstable predictions. If it is not specified, the learning rate
is calibrated online. A finite grid of potential learning rates to be optimized
online can be specified with grid.eta.

’FS’ Fixed-share aggregation rule (Cesa-Bianchi and Lugosi 2006). As for ewa,
a learning rate eta can be chosen by the user or calibrated online. The
main difference with ewa aggregation rule rely in the mixing rate alpha∈
[0, 1] which considers at each instance a small probability alpha to have a
rupture in the sequence and that the best expert may change. Fixed-share
aggregation rule can thus compete with the best sequence of experts that
can change a few times (see oracle), while ewa can only compete with
the best fixed expert. The mixing rate alpha is either chosen by the user
either calibrated online. Finite grids of learning rates and mixing rates to
be optimized can be specified with parameters grid.eta and grid.alpha.

’Ridge’ Online Ridge regression (Cesa-Bianchi and Lugosi 2006). It mini-
mizes at each instance a penalized criterion. It forms at each instance linear
combination of the experts’ forecasts and can assign negative weights that
not necessarily sum to one. It is useful if the experts are biased or corre-
lated. It cannot be used with specialized experts. A positive regularization

12 mixture

coefficient lambda can either be chosen by the user or calibrated online. A
finite grid of coefficient to be optimized can be specified with a parameter
grid.lambda.

’MLpol’, ’MLewa’, ’MLprod’ Aggregation rules with multiple learning rates
that are theoretically calibrated (Gaillard et al. 2014).

’BOA’ Bernstein online Aggregation (Wintenberger 2017). The learning rates
are automatically calibrated.

’OGD’ Online Gradient descent (Zinkevich 2003). See also (Hazan 2019). The
optimization is performed with a time-varying learning rate. At time step
t ≥ 1, the learning rate is chosen to be t−α, where α is provided by alpha
in the parameters argument. The algorithm may or not perform a projection
step into the simplex space (non-negative weights that sum to one) accord-
ing to the value of the parameter ’simplex’ provided by the user.

’FTRL’ Follow The Regularized Leader (Shalev-Shwartz and Singer 2007).
Note that here, the linearized version of FTRL is implemented (see Chap.
5 of (Hazan 2019)). FTRL is the online counterpart of empirical risk mini-
mization. It is a family of aggregation rules (including OGD) that uses at
any time the empirical risk minimizer so far with an additional regulariza-
tion. The online optimization can be performed on any bounded convex set
that can be expressed with equality or inequality constraints. Note that this
method is still under development and a beta version.
The user must provide (in the parameters’s list):

• ’eta’ The learning rate.
• ’fun_reg’ The regularization function to be applied on the weigths. See
auglag: fn.

• ’constr_eq’ The equality constraints (e.g. sum(w) = 1). See auglag:
heq.

• ’constr_ineq’ The inequality constraints (e.g. w > 0). See auglag: hin.
• ’fun_reg_grad’ (optional) The gradient of the regularization function.

See auglag: gr.
• ’constr_eq_jac’ (optional) The Jacobian of the equality constraints. See
auglag: heq.jac

• ’constr_ineq_jac’ (optional) The Jacobian of the inequality constraints.
See auglag: hin.jac

or set default to TRUE. In the latter, FTRL is performed with Kullback reg-
ularization (fun_reg(x) = sum(x log (x/w0)) on the simplex (constr_eq(w)
= sum(w) - 1 and constr_ineq(w) = w). Parameters w0 (weight initializa-
tion), and max_iter can also be provided.

loss.type character, list, or function ("square").

character Name of the loss to be applied (’square’, ’absolute’, ’percentage’, or
’pinball’);

list List with field name equal to the loss name. If using pinball loss, field tau
equal to the required quantile in [0,1];

function A custom loss as a function of two parameters (prediction, observa-
tion). For example, $f(x,y) = abs(x-y)/y$ for the Mean absolute percentage
error or $f(x,y) = (x-y)^2$ for the squared loss.

mixture 13

loss.gradient boolean, function (TRUE).

boolean If TRUE, the aggregation rule will not be directly applied to the loss
function at hand, but to a gradient version of it. The aggregation rule is then
similar to gradient descent aggregation rule.

function Can be provided if loss.type is a function. It should then be a sub-
derivative of the loss in its first component (i.e., in the prediction). For
instance, $g(x) = (x-y)$ for the squared loss.

coefficients A probability vector of length K containing the prior weights of the experts (not
possible for ’MLpol’). The weights must be non-negative and sum to 1.

awake A matrix specifying the activation coefficients of the experts. Its entries lie in
[0,1]. Possible if some experts are specialists and do not always form and
suggest prediction. If the expert number k at instance t does not form any pre-
diction of observation Y_t, we can put awake[t,k]=0 so that the mixture does
not consider expert k in the mixture to predict Y_t.

parameters A list that contains optional parameters for the aggregation rule. If no parameters
are provided, the aggregation rule is fully calibrated online. Possible parameters
are:

eta A positive number defining the learning rate. Possible if model is either
’EWA’ or ’FS’

grid.eta A vector of positive numbers defining potential learning rates for ’EWA’
of ’FS’. The learning rate is then calibrated by sequentially optimizing the
parameter in the grid. The grid may be extended online if needed by the
aggregation rule.

gamma A positive number defining the exponential step of extension of grid.eta
when it is needed. The default value is 2.

alpha A number in [0,1]. If the model is ’FS’, it defines the mixing rate. If the
model is ’OGD’, it defines the order of the learning rate: ηt = t−α.

grid.alpha A vector of numbers in [0,1] defining potential mixing rates for ’FS’
to be optimized online. The grid is fixed over time. The default value is
[0.0001,0.001,0.01,0.1].

lambda A positive number defining the smoothing parameter of ’Ridge’ aggre-
gation rule.

grid.lambda Similar to grid.eta for the parameter lambda.
simplex A boolean that specifies if ’OGD’ does a project on the simplex. In

other words, if TRUE (default) the online gradient descent will be under
the constraint that the weights sum to 1 and are non-negative. If FALSE,
’OGD’ performs an online gradient descent on K dimensional real space.
without any projection step.

averaged A boolean (default is FALSE). If TRUE the coefficients and the weights
returned (and used to form the predictions) are averaged over the past. It
leads to more stability on the time evolution of the weights but needs more
regularity assumption on the underlying process generating the data (i.i.d.
for instance).

quiet boolean. Whether or not to display progress bars.

... Additional parameters

14 mixture

x An object of class mixture

object An object of class mixture

Value

An object of class mixture that can be used to perform new predictions. It contains the parameters
model, loss.type, loss.gradient, experts, Y, awake, and the fields

coefficients A vector of coefficients assigned to each expert to perform the next prediction.

weights A matrix of dimension c(T,K), with T the number of instances to be predicted
and K the number of experts. Each row contains the convex combination to form
the predictions

prediction A matrix with T rows and d columns that contains the predictions outputted by
the aggregation rule.

loss The average loss (as stated by parameter loss.type) suffered by the aggregation
rule.

parameters The learning parameters chosen by the aggregation rule or by the user.

training A list that contains useful temporary information of the aggregation rule to be
updated and to perform predictions.

Author(s)

Pierre Gaillard <pierre@gaillard.me> Yannig Goude <yannig.goude@edf.fr>

References

Cesa-Bianchi N, Lugosi G (2006). Prediction, learning, and games. Cambridge university press.

Gaillard P, Stoltz G, van Erven T (2014). “A Second-order Bound with Excess Losses.” In Pro-
ceedings of COLT’14, volume 35, 176–196.

Hazan E (2019). “Introduction to online convex optimization.” arXiv preprint arXiv:1909.05207.

Shalev-Shwartz S, Singer Y (2007). “A primal-dual perspective of online learning algorithms.”
Machine Learning, 69(2), 115–142.

Wintenberger O (2017). “Optimal learning with Bernstein online aggregation.” Machine Learn-
ing, 106(1), 119–141.

Zinkevich M (2003). “Online convex programming and generalized infinitesimal gradient ascent.”
In Proceedings of the 20th international conference on machine learning (icml-03), 928–936.

See Also

See opera-package and opera-vignette for a brief example about how to use the package.

mixture 15

Examples

library('opera') # load the package
set.seed(1)

Example: find the best one week ahead forecasting strategy (weekly data)
packages
library(mgcv)

import data
data(electric_load)
idx_data_test <- 620:nrow(electric_load)
data_train <- electric_load[-idx_data_test,]
data_test <- electric_load[idx_data_test,]

Build the expert forecasts
##########################

1) A generalized additive model
gam.fit <- gam(Load ~ s(IPI) + s(Temp) + s(Time, k=3) +

s(Load1) + as.factor(NumWeek), data = data_train)
gam.forecast <- predict(gam.fit, newdata = data_test)

2) An online autoregressive model on the residuals of a medium term model

Medium term model to remove trend and seasonality (using generalized additive model)
detrend.fit <- gam(Load ~ s(Time,k=3) + s(NumWeek) + s(Temp) + s(IPI), data = data_train)
electric_load$Trend <- c(predict(detrend.fit), predict(detrend.fit,newdata = data_test))
electric_load$Load.detrend <- electric_load$Load - electric_load$Trend

Residual analysis
ar.forecast <- numeric(length(idx_data_test))
for (i in seq(idx_data_test)) {

ar.fit <- ar(electric_load$Load.detrend[1:(idx_data_test[i] - 1)])
ar.forecast[i] <- as.numeric(predict(ar.fit)$pred) + electric_load$Trend[idx_data_test[i]]

}

Aggregation of experts
###########################

X <- cbind(gam.forecast, ar.forecast)
colnames(X) <- c('gam', 'ar')
Y <- data_test$Load

matplot(cbind(Y, X), type = 'l', col = 1:6, ylab = 'Weekly load', xlab = 'Week')

How good are the expert? Look at the oracles
oracle.convex <- oracle(Y = Y, experts = X, loss.type = 'square', model = 'convex')

if(interactive()){
plot(oracle.convex)

}

16 mixture

oracle.convex

Is a single expert the best over time ? Are there breaks ?
oracle.shift <- oracle(Y = Y, experts = X, loss.type = 'percentage', model = 'shifting')
if(interactive()){

plot(oracle.shift)
}
oracle.shift

Online aggregation of the experts with BOA
###

Initialize the aggregation rule
m0.BOA <- mixture(model = 'BOA', loss.type = 'square')

Perform online prediction using BOA There are 3 equivalent possibilities 1)
start with an empty model and update the model sequentially
m1.BOA <- m0.BOA
for (i in 1:length(Y)) {

m1.BOA <- predict(m1.BOA, newexperts = X[i,], newY = Y[i], quiet = TRUE)
}

2) perform online prediction directly from the empty model
m2.BOA <- predict(m0.BOA, newexpert = X, newY = Y, online = TRUE, quiet = TRUE)

3) perform the online aggregation directly
m3.BOA <- mixture(Y = Y, experts = X, model = 'BOA', loss.type = 'square', quiet = TRUE)

These predictions are equivalent:
identical(m1.BOA, m2.BOA) # TRUE
identical(m1.BOA, m3.BOA) # TRUE

Display the results
summary(m3.BOA)
if(interactive()){

plot(m1.BOA)
}

Plot options
##################################

?plot.mixture

static or dynamic : dynamic = F/T
plot(m1.BOA, dynamic = FALSE)

just one plot with custom label ?
'plot_weight', 'boxplot_weight', 'dyn_avg_loss',
'cumul_res', 'avg_loss', 'contrib'
if(interactive()){

plot(m1.BOA, type = "plot_weight",
main = "Poids", ylab = "Poids", xlab = "Temps")

oracle 17

}

subset rows / time
plot(m1.BOA, dynamic = FALSE, subset = 1:10)

plot best n expert
plot(m1.BOA, dynamic = FALSE, max_experts = 1)

Using d-dimensional time-series
##################################

Consider the above exemple of electricity consumption
to be predicted every four weeks
YBlock <- seriesToBlock(X = Y, d = 4)
XBlock <- seriesToBlock(X = X, d = 4)

The four-week-by-four-week predictions can then be obtained
by directly using the `mixture` function as we did earlier.

MLpolBlock <- mixture(Y = YBlock, experts = XBlock, model = "MLpol", loss.type = "square",
quiet = TRUE)

The predictions can finally be transformed back to a
regular one dimensional time-series by using the function `blockToSeries`.

prediction <- blockToSeries(MLpolBlock$prediction)

Using the `online = FALSE` option

Equivalent solution is to use the `online = FALSE` option in the predict function.
The latter ensures that the model coefficients are not
updated between the next four weeks to forecast.
MLpolBlock <- mixture(model = "BOA", loss.type = "square")
d = 4
n <- length(Y)/d
for (i in 0:(n-1)) {

idx <- 4*i + 1:4 # next four weeks to be predicted
MLpolBlock <- predict(MLpolBlock, newexperts = X[idx,], newY = Y[idx], online = FALSE,

quiet = TRUE)
}

print(head(MLpolBlock$weights))

oracle Compute oracle predictions

18 oracle

Description

The function oracle performs a strategie that cannot be defined online (in contrast to mixture). It
requires in advance the knowledge of the whole data set Y and the expert advice to be well defined.
Examples of oracles are the best fixed expert, the best fixed convex combination rule, the best linear
combination rule, or the best expert that can shift a few times.

Usage

oracle(
Y,
experts,
model = "convex",
loss.type = "square",
awake = NULL,
lambda = NULL,
niter = NULL,
...

)

Arguments

Y A vector containing the observations to be predicted.

experts A matrix containing the experts forecasts. Each column corresponds to the pre-
dictions proposed by an expert to predict Y. It has as many columns as there are
experts.

model A character string specifying the oracle to use or a list with a component name
specifying the oracle and any additional parameter needed. Currently available
oracles are:

’expert’ The best fixed (constant over time) expert oracle.
’convex’ The best fixed convex combination (vector of non-negative weights

that sum to 1)
’linear’ The best fixed linear combination of expert
’shifting’ It computes for all number m of stwitches the sequence of experts

with at most m shifts that would have performed the best to predict the
sequence of observations in Y.

loss.type character, list or function.

character Name of the loss to be applied (’square’, ’absolute’, ’percentage’, or
’pinball’);

list When using pinball loss: list with field name equal to ’pinball’ and field tau
equal to the required quantile in [0,1];

function A custom loss as a function of two parameters.

awake A matrix specifying the activation coefficients of the experts. Its entries lie in
[0,1]. Possible if some experts are specialists and do not always form and
suggest prediction. If the expert number k at instance t does not form any pre-
diction of observation Y_t, we can put awake[t,k]=0 so that the mixture does
not consider expert k in the mixture to predict Y_t. Remark that to compute the

plot.mixture 19

best expert oracle, the performance of unactive (or partially active) experts is
computed by using the prediction of the uniform average of active experts.

lambda A positive number used by the ’linear’ oracle only. A possible L_2 regular-
ization parameter for computing the linear oracle (if the design matrix is not
identifiable)

niter A positive integer for ’convex’ and ’linear’ oracles if direct computation of the
oracle is not implemented. It defines the number of optimization steps to per-
form in order to approximate the oracle (default value is 3).

... Additional parameters that are passed to optim function is order to perform
convex optimization (see parameter niter).

Value

An object of class ’oracle’ that contains:

loss The average loss suffered by the oracle. For the ’shifting’ oracle, it is a vector
of length T where T is the number of instance to be predicted (i.e., the length of
the sequence Y). The value of $loss(m)$ is the loss (determined by the parameter
loss.type) suffered by the best sequence of expert with at most $m-1$ shifts.

coefficients Not for the ’shifting’ oracle. A vector containing the best weight vector corre-
sponding to the oracle.

prediction Not for the ’shifting’ oracle. A vector containing the predictions of the oracle.

rmse If loss.type is the square loss (default) only. The root mean square error (i.e., it
is the square root of loss.

Author(s)

Pierre Gaillard <pierre@gaillard.me>

plot.mixture Plot an object of class mixture

Description

provides different diagnostic plots for an aggregation procedure.

Usage

S3 method for class 'mixture'
plot(
x,
pause = FALSE,
col = NULL,
alpha = 0.01,
dynamic = T,
type = "all",

20 plot.mixture

max_experts = 50,
col_by_weight = TRUE,
xlab = NULL,
ylab = NULL,
main = NULL,
subset = NULL,
...

)

Arguments

x an object of class mixture. If awake is provided (i.e., some experts are unactive),
their residuals and cumulative losses are computed by using the predictions of
the mixture.

pause if set to TRUE (default) displays the plots separately, otherwise on a single page

col the color to use to represent each experts, if set to NULL (default) use RRColorBrewer::brewer.pal(...,"Spectral"

alpha numeric. Smoothing parameter for contribution plot (parameter ’f’ of function
lowess).

dynamic boolean. If TRUE, graphs are generated with rAmCharts, else with base R.

type char.

• ’all’ Display all the graphs ;
• ’plot_weight’, ’boxplot_weight’, ’dyn_avg_loss’, ’cumul_res’, ’avg_loss’,

’contrib’ Display the selected graph alone.

max_experts integer. Maximum number of experts to be displayed (only the more influen-
cial).

col_by_weight boolean. If TRUE (default), colors are ordered by weights of each expert, else
by column

xlab character. Custom x-axis label (individual plot only)

ylab character. Custom y-axis label (individual plot only)

main character. Custom title (individual plot only)

subset numeric. Positive indices for subsetting data before plot.

... additional plotting parameters

Value

plots representing: plot of weights of each expert in function of time, boxplots of these weights,
cumulative loss LT =

∑T
t=1 li,t of each expert in function of time, cumulative residuals

∑T
t=1(yt−

fi,t) of each expert’s forecast in function of time, average loss suffered by the experts and the
contribution of each expert to the aggregation pi,tfi,t in function of time.

Author(s)

Pierre Gaillard <pierre@gaillard.me>

Yannig Goude <yannig.goude@edf.fr>

plot.oracle 21

See Also

See opera-package and opera-vignette for a brief example about how to use the package.

plot.oracle Plot an aggregation procedure

Description

oracle plot. It has one optional arguments.

Usage

S3 method for class 'oracle'
plot(x, sort = TRUE, col = NULL, dynamic = TRUE, ...)

Arguments

x An object of class oracle.

sort if set to TRUE (default), it sorts the experts by performance before the plots.

col colors

dynamic If TRUE, graphs are generated with rAmCharts, else with base R.

... additional arguments to function plot.

plot_ridge_weights Functions to render dynamic mixture graphs using rAmCharts

Description

Functions to render dynamic mixture graphs using rAmCharts

Usage

plot_ridge_weights(
data,
colors = NULL,
max_experts = 50,
round = 3,
xlab = NULL,
ylab = NULL,
main = NULL

)

plot_weights(
data,

22 plot_ridge_weights

colors = NULL,
max_experts = 50,
round = 3,
xlab = NULL,
ylab = NULL,
main = NULL

)

boxplot_weights(
data,
colors = NULL,
max_experts = 50,
xlab = NULL,
ylab = NULL,
main = NULL

)

plot_dyn_avg_loss(
data,
colors = NULL,
max_experts = 50,
round = 3,
xlab = NULL,
ylab = NULL,
main = NULL

)

plot_cumul_res(
data,
colors = NULL,
max_experts = 50,
round = 3,
xlab = NULL,
ylab = NULL,
main = NULL

)

plot_avg_loss(
data,
colors = NULL,
max_experts = 50,
round = 3,
xlab = NULL,
ylab = NULL,
main = NULL

)

plot_contrib(

plt_oracle_convex 23

data,
colors = NULL,
alpha = 0.1,
max_experts = 50,
round = 3,
xlab = NULL,
ylab = NULL,
main = NULL

)

Arguments

data mixture object. Displays graphs.
colors character. Colors of the lines and bullets.
max_experts integer. Maximum number of experts to be displayed (only the more influen-

cial).
round integer. Precision of the displayed values.
xlab character. Custom x-axis label (individual plot only)
ylab character. Custom y-axis label (individual plot only)
main character. Custom title (individual plot only)
alpha numeric. Smoothing parameter for contribution plot (parameter ’f’ of function

lowess).

Value

a rAmCharts plot

plt_oracle_convex Functions to render dynamic oracle graphs using rAmCharts

Description

Functions to render dynamic oracle graphs using rAmCharts

Usage

plt_oracle_convex(data, colors, round = 2)

Arguments

data named vector. Vector of values to be displayed.
colors character. Colors to be used.
round integer (2). Precision of the values in the tooltips..

Value

a rAmCharts plot

24 predict.mixture

predict.mixture Predict method for Mixture models

Description

Performs sequential predictions and updates of a mixture object based on new observations and
expert advice.

Usage

S3 method for class 'mixture'
predict(
object,
newexperts = NULL,
newY = NULL,
awake = NULL,
online = TRUE,
type = c("model", "response", "weights", "all"),
quiet = TRUE,
...

)

Arguments

object Object of class inheriting from ’mixture’

newexperts An optional matrix in which to look for expert advice with which predict. If
omitted, the past predictions of the object are returned and the object is not
updated.

newY An optional matrix with d columns (or vector if d = 1) of observations to be
predicted. If provided, it should have the same number of rows as the number
of rows of newexperts. If omitted, the object (i.e, the aggregation rule) is not
updated.

awake An optional array specifying the activation coefficients of the experts. It must
have the same dimension as experts. Its entries lie in [0,1]. Possible if some
experts are specialists and do not always form and suggest prediction. If the
expert number k at instance t does not form any prediction of observation Y_t,
we can put awake[t,k]=0 so that the mixture does not consider expert k in the
mixture to predict Y_t.

online A boolean determining if the observations in newY are predicted sequentially
(by updating the object step by step) or not. If FALSE, the observations are
predicting using the object (without using any past information in newY). If
TRUE, newY and newexperts should not be null.

type Type of prediction. It can be

model return the updated version of object (using newY and newexperts).

seriesToBlock 25

response return the forecasts. If type is ’model’, forecasts can also be obtained
from the last values of object$prediction.

weights return the weights assigned to the expert advice to produce the fore-
casts. If type is ’model’, forecasts can also be obtained from the last rows
of object$weights.

all return a list containing ’model’, ’response’, and ’weights’.

quiet boolean. Whether or not to display progress bars.

... further arguments are ignored

Value

predict.mixture produces a matrix of predictions (type = ’response’), an updated object (type =
’model’), or a matrix of weights (type = ’weights’).

seriesToBlock Convert a 1-dimensional series to blocks

Description

The functions seriesToBlock and blockToSeries convert 1-dimensional series into series of
higher dimension. For instance, suppose you have a time-series that consists of T = 100 days
of d = 24 hours. The function seriesToBlock converts the time-series X of Td = 2400 observa-
tions into a matrix of size c(T=100,d =24), where each line corresponds to a specific day. This
function is usefull if you need to perform the prediction day by day, instead of hour by hour. The
function can also be used to convert a matrix of expert prediction of dimension c(dT,K) where K
is the number of experts, into an array of dimension c(T,d,K). The new arrays of observations
and of expert predictions can be given to the aggregation rule procedure to perform d-dimensional
predictions (i.e., day predictions).

Usage

seriesToBlock(X, d)

blockToSeries(X)

Arguments

X An array or a vector to be converted.

d A positive integer defining the block size.

Details

The function blockToSeries performs the inverse operation.

Index

∗ ~models
mixture, 10

∗ ~ts
mixture, 10

∗ datasets
electric_load, 7

∗ package
opera-package, 2

auglag, 12

blockToSeries (seriesToBlock), 25
boxplot_weights (plot_ridge_weights), 21

check_loss, 5
check_matrix, 6

electric_load, 7

FTRL, 7, 12

loss, 9
lowess, 20, 23

mixture, 10, 18

opera (opera-package), 2
opera-package, 2
optim, 19
oracle, 11, 17

plot.mixture, 19
plot.oracle, 21
plot_avg_loss (plot_ridge_weights), 21
plot_contrib (plot_ridge_weights), 21
plot_cumul_res (plot_ridge_weights), 21
plot_dyn_avg_loss (plot_ridge_weights),

21
plot_ridge_weights, 21
plot_weights (plot_ridge_weights), 21
plt_oracle_convex, 23

predict.mixture, 24
print.mixture (mixture), 10

seriesToBlock, 25
summary.mixture (mixture), 10

26

	opera-package
	check_loss
	check_matrix
	electric_load
	FTRL
	loss
	mixture
	oracle
	plot.mixture
	plot.oracle
	plot_ridge_weights
	plt_oracle_convex
	predict.mixture
	seriesToBlock
	Index

